
Designing a Memory Benchmark
by

Chris Bell, Scott Clark & Ryan Radcliff
Deopli Corporation

Executive Summary
Analyzing the performance of a memory
subsystem, as a component of a full system, can
be difficult. Most benchmarks are a scaled down
version of some real tool, leading to difficulties
isolating the performance of the memory from
the rest of the server, such as CPU, chipsets, and
storage. In addition, the memory’s footprint
is often a pitfall. Some tests from many years
ago are still utilized, when gigabytes-worth of
memory were only a dream, and only exercise
a small percentage of RAM. However, modern
systems have large caches with multiple levels.
and benchmarks need to use a LOT of memory
to avoid skewing results in the event of a fast
on-chip cache.

Modern systems involved in tests have two CPU
sockets, with memory banks tied to each socket.
With modern operating systems, predicting
which CPU will execute a given job (or time slice
of a job) has grown difficult. Therefore, it is wise
to run multiple concurrent jobs, averaging the
results in an effort to cancel out any bias from
accessing memory, either directly or through
the alternate CPU.

In summary, the tool must:

•	 Fit in memory and not rely on the data on
disk or network

•	 Avoid using a lot of processing time
between memory accesses

•	 Use a large enough memory footprint to
negate the accelerated caches

•	 Easily use multiple processors/cores

•	 Be written as a benchmark that carefully
measures and reports performance

•	 Be written as a benchmark with running
parameters easily adjusted to compensate
for various test scenarios (e.g., 144 or 288 GB
system).

Although not a hard requirement, an open
source tool is preferable - as the code can be
inspected, reviewed, and modified, if necessary.

To meet these requirements, the open-source
tool, Ramspeed, was selected. Ramspeed is
specifically written to overcome the concerns
listed above, as well as test the speed of memory
reads and writes with as little interference
as possible from the other components of a
system.

DRAFT - NOT For Release

observed, as the relative speeds converge when accessing
main memory.

The L1 (32K data) and L2 (256K) cache is dedicated to each core,
and as the number of processes increases, the total memory
speed increases linearly (on the left-hand side of the graph).
The L3 cache (12MB) is shared over the 6 cores in a CPU chip,
and the third plateau does not have as much benefit from
the 8 cores, since they are all sharing the cache. Above the
16MB block size (16384 on the graph), the effects of cache
are overwhelmed as all three lines settle to a fairly consistent
level. This action represents the speed of the memory system.
Therefore, as high memory use is the intent of the test, a point
larger than 16MB is chosen. This selection ensures no cache
was involved, while large memory utilization is represented by
selecting 1024K (which is 1048576 on the graph) for the block
size. In addition, the highest concurrency (i.e., 8 processes) is
chosen to utilize both CPU chips.

The published results were generated using the following run:

./ramsmp -b 3 -m 1024 -p 8

The output of this test (test=3) displays as the following:

./ramsmp -b 3

8Gb per pass mode, 2 processes

INTEGER Copy: 2614.68 MB/s

INTEGER Scale: 2568.34 MB/s

INTEGER Add: 2804.88 MB/s

INTEGER Triad: 2783.94 MB/s

INTEGER AVERAGE: 2692.96 MB/s

The output of the incremental tests (like test=1 or 2) displays
as the following:

./ramsmp -b 1

8Gb per pass mode, 2 processes

INTEGER & WRITING 1 Kb block: 76996.27 MB/s

INTEGER & WRITING 2 Kb block: 80227.28 MB/s

INTEGER & WRITING 4 Kb block: 80828.76 MB/s

INTEGER & WRITING 8 Kb block: 81128.01 MB/s

Installing Ramspeed/SMP
The following installation procedure assumes a Linux operating
system (such as CentOS, Redhat, Ubuntu) with a working
GCC build environment. The examples below are presented
in command-line format and a familiarity with Unix shell
commands and scripts is assumed.

1.	Get source code and documentation from the following:
	 http://alasir.com/software/ramspeed/
2.	Use the SMP flavor, version 3.5.0:
	 http://www.alasir.com/software/ramspeed/ramsmp-		
	 3.5.0.tar.gz
3.	Unpack the archive:
	 tar zxvf ramsmp-3.5.0.tar.gz
4.	Change directory to the newly created directory:
	 cd ramsmp-3.5.0
5.	Build the tool. The proper OS should be automatically
detected and binary “ramsmp” produced.
	 ./build.sh

Performing Memory Tests
The first choice was the test number, which is related to the
mathematical operations used. A simple set was chosen,
excluding the fancier MMX or SSE instructions, that simply
adds and multiplies. The graph below displays the block size
(in kilobytes) on the X-axis, and the total memory speed (in
Megabytes/second) on the Y-axis. The three plots are the
number of concurrent processes (2, 4 and 8). The following
three runs are displayed:

	 ../ramsmp -b 1 -m 8192

	 ../ramsmp -b 1 -m 4096 -p 4

	 ../ramsmp -b 1 -m 2048 -p 8

Note: Different block sizes are intended to limit the test to a maxi-
mum total memory size - so that tests without a full 288 GB
Ram could be run using the same script.

As illustrated, the affect of caches can be observed by varying
the block size of the memory tests (as shown on the X-axis,
in Kb/block). This particular CPU contains three levels of on-
chip cache, obvserved by drops near 64Kb, 512Kb, and 4Mb.
In addition, the interaction between multiple cores can is

Designing a Memory Benchmark 2

HyperCloud DIMM Test Results. The 1048576 block size is used as the basis for additional test results.

INTEGER & WRITING 16 Kb block: 76981.78 MB/s

INTEGER & WRITING 32 Kb block: 80577.03 MB/s

INTEGER & WRITING 64 Kb block: 79105.38 MB/s

INTEGER & WRITING 128 Kb block: 20166.38 MB/s

INTEGER & WRITING 256 Kb block: 20161.37 MB/s

INTEGER & WRITING 512 Kb block: 20330.83 MB/s

INTEGER & WRITING 1024 Kb block: 4409.01 MB/s

INTEGER & WRITING 2048 Kb block: 1934.89 MB/s

INTEGER & WRITING 4096 Kb block: 1916.94 MB/s

INTEGER & WRITING 8192 Kb block: 1919.43 MB/s

INTEGER & WRITING 16384 Kb block: 1921.77 MB/s

INTEGER & WRITING 32768 Kb block: 1929.74 MB/s

The actual script run under the various test conditions ran a
bunch of tests to provide a sanity check, and then the whole
script was run multiple times and the results averaged to
reduce any anomalous glitches. Here is the full script:

#!/bin/sh -x

run=”run4”

echo =====

echo =====

echo 3-marray-256-proc-4

../ramsmp -b 3 -m 256 -p 4 | tee ${run}-3-
marray-256-proc-4.log

echo =====

echo 3-marray-512-proc-4

../ramsmp -b 3 -m 512 -p 4 | tee ${run}-3-
marray-512-proc-4.log

echo =====

echo 3-marray-1024-proc-4

../ramsmp -b 3 -m 1024 -p 4 | tee ${run}-3-
marray-1024-proc-4.log

echo =====

echo 3-marray-2048-proc-4

../ramsmp -b 3 -m 2048 -p 4 | tee ${run}-3-
marray-2048-proc-4.log

echo =====

echo 3-marray-4096-proc-4

../ramsmp -b 3 -m 4096 -p 4 | tee ${run}-3-
marray-4096-proc-4.log

echo =====

echo =====

echo 3-marray-256-proc-8

../ramsmp -b 3 -m 256 -p 8 | tee ${run}-3-
marray-256-proc-8.log

echo =====

echo 3-marray-512-proc-8

../ramsmp -b 3 -m 512 -p 8 | tee ${run}-3-

marray-512-proc-8.log

echo =====

echo 3-marray-1024-proc-8

../ramsmp -b 3 -m 1024 -p 8 | tee ${run}-3-
marray-1024-proc-8.log

echo =====

echo 3-marray-2048-proc-8

../ramsmp -b 3 -m 2048 -p 8 | tee ${run}-3-
marray-2048-proc-8.log

echo =====

echo =====

echo 1-marray-8192-proc-2

../ramsmp -b 1 -m 8192 | tee ${run}-1-
marray-8192.log

echo =====

echo 1-marray-4096-proc-4

../ramsmp -b 1 -m 4096 -p 4 | tee ${run}-1-
marray-4096-proc-4.log

echo =====

echo 1-marray-2048-proc-8

../ramsmp -b 1 -m 2048 -p 8 | tee ${run}-1-
marray-2048-proc-8.log

echo =====

echo =====

echo 2-marray-8192-proc-2

../ramsmp -b 2 -m 8192 | tee ${run}-2-
marray-8192.log

echo =====

echo 2-marray-4096-proc-4

../ramsmp -b 2 -m 4096 -p 4 | tee ${run}-2-
marray-4096-proc-4.log

echo =====

echo 2-marray-2048-proc-8

../ramsmp -b 2 -m 2048 -p 8 | tee ${run}-2-
marray-2048-proc-8.log

echo =====

echo =====

echo 7-marray-8192-proc-2

../ramsmp -b 7 -m 8192 | tee ${run}-7-
marray-8192.log

echo =====

echo 7-marray-4096-proc-4

../ramsmp -b 7 -m 4096 -p 4 | tee ${run}-7-
marray-4096-proc-4.log

echo =====

echo 7-marray-2048-proc-8

../ramsmp -b 7 -m 2048 -p 8 | tee ${run}-7-
marray-2048-proc-8.log

echo =====

Designing a Memory Benchmark 3

echo =====

echo 10-marray-8192-proc-2

../ramsmp -b 10 -m 8192 | tee ${run}-10-
marray-8192.log

echo =====

echo 10-marray-4096-proc-4

../ramsmp -b 10 -m 4096 -p 4 | tee ${run}-10-
marray-4096-proc-4.log

echo =====

echo 10-marray-2048-proc-8

../ramsmp -b 10 -m 2048 -p 8 | tee ${run}-10-
marray-204

Interpreting Results
The Ramspeed tool prints the results as a total bandwidth the
group of processes achieved. The results are highly dependent
on various factors within the design of the system, as well
as the current configuration. As well, care must be taken to
ensure that the exact same option settings are chosen before
comparing different runs. Memory speeds, interleaving, CPU
clock speeds, CAS/RAS timings and block sizes all contribute
to the resulting equation - proving an easy formula does not
exist for computing <xx MB/s> to <yyy memory clock speed>.
However, the described tests still provide an indication of the
kind of performance a real application can reach, and the results
are useful as a relative scale (similar to old SPECint numbers).

References
Ramspeed/SMP [http://alasir.com/software/ramspeed/] •

•	 Intel’s Tick-Tock Model [http://www.intel.com/
 technology/tick-tock/ index.htm] •
•	 Intel Xeon Processor 5500 Series Datasheet, Volume 2
 (April 2009) [http://www.intel.com/Assets/en_US/PDF/
 datasheet/321322. pdf] \
•	 Intel Xeon Processor 5600 Series Datasheet, Volume 2
 (March 2010) [http://www.intel.com/Assets/en_US/PDF/
 datasheet/323370. pdf]

Designing a Memory Benchmark 4

About Netlist

Founded in 2000 and headquartered in Irvine, California, Netlist
is the leading provider of high-performance modular memory
subsystems to the world’s premier OEMs. Netlist specializes
in bridging the widening gap between the system OEM’s
requirements and the capabilities of the IC manufacturer.
Our patented memory subsystem technologies overcome
density, performance, and cost limitations, effectively blending
commodity components with their inherent deficiencies into
highly reliable, optimized memory solutions. Netlist pioneered
ideas such as embedding passives into printed circuit boards to
free up board real estate, doubling densities via 4-rank double
data rate (DDR) technology, and other off-chip technology
advances that result in improved performance and lower costs
compared to conventional memory. For more information, visit
www.netlist.com.

About Deopli

Deopli is one of the foremost thought leaders in the EDA
infrastructure and cloud computing space. Composed of
highly- trained personnel, equipped with technology and
experience, operating under principles of self-sufficiency,
technical competence, speed, efficiency and close teamwork.
Providing advisory and consulting services to EDA companies
with respect to their HPC environments, they also conduct
specialized operations including reconnaissance, strategy
definition, tactical definition and resource training. In addition,
Deopli executes non-operational, high-risk tasks to achieve
significant strategic objectives. Deopli is headquartered in
Irvine, California. For more information, visit www.deopli.com.

